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Time Bounds for Real-Time Process Control
in the Presence of Timing Uncertainty*

Hagit Attiva and Nancy A. Lynch
Laboratory for Computer Science
MIT o
Cambridge. MA 02139

Juiy 10, 1989

. Abstract

A timing-based variant of the mutual exclusion problem is considered. In this variant. only

an upper-bound.,#, cn the time it takes to release the resource is known, and no explicit
signal is sent when the resource is released; furthermore. the only mechanisin to measure
real time is an inaccurate clock. whose tick intervals take time hetweer two constants, * .
c; < ca.

When control is centralized it is proved that

n-ca([(m+0/e] + 1) +1

15 an exact bound on the worst case response time o - -uch algorithm. where n is the
number of contenders for the resource and { is an upper . >und on process step time. On
the other hand. when control is distributed among processes connected via communication
lines with an upper bound. d. for message delivery time, it is proved that

nlea(m+ 0/} + 1)+ d+ e+ 2

is an upper bound. A new technique involviug shifting and shrinking executions is combined
with a careful analysis of the best allocation policy to prove a corresponding lower bound

of
n-colmjery+(n - i

These combinatorial results shed some light on modeling and verficauun issues rolnted to
real-time systeins.
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1 Introduction

An important arca of computer applications is real-tie process control. in which a compnter
svstem interacts with a real-world systewn in order to guarantee certain desirable real-world
belravior. In most iuteresting ecases, the real-world requirements involve tiuiing properties.
and o the behavior of the computer systemn is required to satisfy certain timing constraints.
In order to be able to guaraitee timing coustraints, the computer systermn must satisfy some
assumptions about time - for example. its various components should operate at known speeds.

It is clear that gcod theoretical work in the area of real-time systems is necessary. i
the past few vears. several researchers have proposed new frameworks for specifving require-
ments of such svstems, deseribing tmplementations. and proving that the implementations
satistv the requirements. These frameworks are based on. among others, finite state machines
([DR3]). weakest precondition methods (JUR1]). first order logie ([JMS6. JMST]), temporal logic
([BHR11). Petri nets ([CRS3. LSS7.STT]), and process algebra ([HGRSI7T. KSRGASR, ZLGRI)).
Work is still needed in evaluating aud comparing the various models for their usefulness in
reasoning aboui importaut problems in this avea and perhaps in developing new models if
these prove to be inadequate.

Work is also necded in developing the complexity theory of such systems: very little work
hias so far been doue in this arca. Au example of the kind of work needed is provided by the
theory of asynchronous concurrent svstems. 1That theory contains many combinatorial results
that show what can and cannot be accomplished by asynchronous systems: for tasks that can
be accomplished. other combinatorial results determine the inherent costs. In addition to their
individual importance, these results also provide a testbed for evaluating modeling decisions
and a stimulus for the developent of algorithm verification techniques. Similar resuits should
be possible for real-time systems. Some examples of complexity results that have already
been obtained for real-time systems are the many results on clock synchronization, including
[DHSSG. HMMR5. L7380 LLS 1. WLS8] (see [SWLSS] for a survey).

In this paper. we embark on a study of complexity results for real-time systems. We begin
this study by cousidering timing-based vartations of certain problems that have previously been
studied in asvuchronous conenrrent systems. In particular, in this paper. we study a variant of
the mutual erclusion problem. This problem is one of the fundamental problems in distributed
computing: it serves as an abstraction of a large class of hazard avoidance problems. We note
that this particular problem appears in the real-time computing literature {(cf. [JMS8T]) as the
“nuclear reactor problem™. There, operators push different buttons to requesi the motion of
different control rods in the same nuclear reactor. It is undesirable to have more than one
control rod moving at the sam» time, presumably since in that case the nuclear reaction might
be siowed down *oo mich.

More ep-0f0 0 Ty we consider aosystem conaisting of some number. n. of identical moving
parts (e.a.. control rods). no two of which are supposed to move at the same time. An operator
associated with ench moving part can request permission for the associated part to move by
pushing a button that sends a REQUEST signal to the computer system. The system responds
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with GRANT signals: each GRANT signal gives permission to the designated moving part to
move, but such motion isx expected to he finished no more than a fixed time. . later. The
svstem Is only supposed 1o issite a GRANT signal when it knows that it is safe to move the
corresponding moving part. e at least al time o has elapsed sincee the tast GRANT signal.
We assume. for simplicitv, that a REQUEST signal i~ only issued by a particular operator
if any preceding REQUEST by that operator has already been satisfied (by a corresponding
GGRANT signal). Our goal is to minimize the worst-case time between a REQUEST signal
and the corresponding GRANT signal, i.e. the warst-case responsc tine.

The computer system might cousist of a single process running on a dedicated proces-
sor or might be a distributed system running on separate processors comiinnicating over a
message system. Solving the problear efticiently requires the computer system to make ac-
curate estimates of the elapsed time since the last GRANT signal: the difficulty, hiowever. is
that the computer system only has inaccurate information abont time. as given by inaccurate
clock components within the system and by estilwates of the time required for certain events.
Specificallv. the only information about time that the computer system has is the {ollowing:

1. the knowledge that a moving part will stop moving within time m after a GRANT signal.

2. the knowledee that the tine between successive ticks of any clock is always in the interval
lcr.cot for known constants ¢ and ¢ where 0 < ¢ < ey,

the knowledge that the time between successive steps of any process within the computer
system is always in the interval [0./]. for a known constant /.0 </, and

4. (if the system is distributed) the knowledge that the time 1o deliver the oldest message
in eacl channel 1s no greater than a known constant d.0 < d.

in the cases we have in mind. we suppose that | << ¢; < ¢3 << d << m, but we state
explicitly any assumptions that we require about relative sizes of the various constants.

One way in which our problem differs from the mutual exclusion problem usually studied
in asvnchronous systems is that we do not assume that an explicit signal is conveved to the
computer system when a moving part stops moving; the only information the system has about
the completion of the critical activity is based on its estiinates of the elapsed time. It is fairly
tvpical for real-time svstems to use time estimates in order to make deductions about recal-
world behavior. The results of this paper indicate some of the costs that result from using
such estimates,

We obtain the following results, First. we consider a centralized computer system, consist-
ing of just a single process with a local clock. For that ease. we show that

,,.4-2(;(1.1_L/")’/(-1J' + 1)+

is an cract bound on the worst-case response time for the timing-based mutual exclusion prob-
e, The upper hound result arises from a careful analvsis of a simple FIFO queue algorithm,




while the matching lower bound result arises from explicitly constructing aud “retiming™ exe-
cutions to obtain a contradiction.

\We then consider the distributed case. which is substantially more complicated. For that
case. we obtain very close (but not exact) bounds: an upper bound of

niea({tm+ /ey + 1) +d+ ¢y + 2
and a lower bound of
necalmjey)y+ (= Hd

Assuming that the parameters have the relative sizes described earlier, e.g.. that d is much
larger than /. ¢ and ¢y, the gap between these two bounds is just slightly more than a single
message delay time. The upper bound arises from a simple token-passing algorithm, while
the lower bound proof employs a new technique of shifting some of the events happening al a
process while carefully retiming other events.

The model that we use for proving our results is the I/O automaton model [LT87]. which
has been extended recently to include timing [AIMTS88]. As noted earlier, many people are
working on the development of other models and frameworks for reasoning about real-time
systems. The most popular way of evaluating such frameworks involves their application to the
specification and verification of substantial examples of practical utility. This paper, however.
suggests a complementary approach. Since a framework for real-time processing should allow
proof of combinatorial upper and lower bound and impossibility results, in addition to allowing
specification and verification of systems. careful proofs of combinatorial results such as those
in this paper should teach us a good deal about the appropriateness of a mndel for real-time
processing,

The rest of this paper is organized as follows. Section 2 presents the timed I/O automaton
model. Section 3 contains the general statement of the problem to be solved. Section 4 contains
our results for the centralized case, Section 5 contains our results for the distributed case, and
Section 6 contains some discussion and open problems.

2 Model and Definitions

2.1 I/O Automata

An I/O automaton consists of the following components: a set of actions, classified as output.
input and internal. a set of stafes. including a distinguished subset called the start states. a
set of (statc. action, state) triples called steps. and a partition of the locally controlled (output
and internal) actions into equivalence classes. An action 7 is said to be enabled in a state
8" provided that there is a step of the form (+'.7.5). An automaton is required to be input




enabled, which means thit every input action must be enabled in every state. The partition
groups actions together that are to be thought of as under the control of the same underlying
process.

Concurrent systems are modeled by compositions of 1/0 automata, as defined in [LT87]. In
order to be composed, automata must be strongly compatible; this means that no action can be
an ontput of more than one component. that internal actions of one component are not shared
by any other component, and that no action is shared by infinitely many components. The
result of such a composition is another 1/0Q automaton. The hiding operator can be applied to
reciassify output actions as internal actions.

We refer the reader to [LT87] for a complete presentation of the model and its properties.

2.2 Timed Automata

We augment the I/0 autornaton model as in [MMT88] to allow discussion of timing properties.
Namely, a timed I/0 automaton is an [/O automaton with an additional component called
a boundmap. The boundinap associates a closed subinterval of [0,50] with each class in the
automaton’s partition; to avoid certain boundary cases we assume that the lower bound of each
interval is not co and the upper bound is nonzero. This interval represents the range of possible
differences between successive times at which the given class gets a chance to perform an action.
We sometimes use the notation b,(C) to denote the lower bound assigned by boundmap b to
class C, and 8,(C') for the corresponding upper bound.

A timed sequence is a sequence of alternating states and (action,time) pairs:

so,(m,tl),sl,(m.tz) e

Define tg = 0. The times are required to be nondecreasing, i.e., for aay ¢ > 1 for which ¢,
is defined, t; > f,_;, and if the sequence is infinite then the times are also required to be
unbounded. For any finite timed sequence a define t.,4(@) to be the time of the last event in
a, if a is nonempty, or 0, if « is empty; for an infinite timed sequence a, tenqd(@) = 00.

A timed sequence is said to be a timed cxecution of a timed automaton A with boundmap
b provided that when the time components are removed, the resulting sequence is an execution
of the I/O automaton underlying A, and it satisfies the following conditions for ecach class C
of the partition of A4 and every 1:

1. Suppose b,(C) < . If some action in (' is enabled in s; and one of the following holds:
either ¢ = 0 or no action in C is enabled in s,_{ or =y is in (', then there exists j > ¢
with #; < t; + b, (C) such that either 7; is in ' or no action of ' is enabled in s,.

2. If some action in (" is enabled in s; and either 7 = 0 or no action in C is enabled in s,_;
or m, is in (/. then there does not exist y > i with t, < t, + b,(C') and 7, in C.




The first condition savs that, starting from when an action in C occurs or first becomes
enabled, within time b,(C") either some action in (" occurs or there is a point at which no such
action is enabled. The second condition says that. again starting from when an action in C
occurs or first becomes enabled, no action in (' can occur before time b:(C) has elapsed. The
third condition merely requires that the steps taken by the automaton are indeed legal.

Note that the definition of a timed execution includes a liveness condition (in 1.} in addition
to safety conditions (in both 1. and 2.). For finite timed sequences, it is sometimes interesting
to consider only the safety properties. Thus, we define a weaker notion, as follows. A finite
timed sequence is said to be a timed semi-execution provided that when the time components
are removed. the resulting sequence is an execution of the I/O automaton underlying A, and
it satisfies the following conditions, for every class (" and ¢.

1. Suppose b,(C) < oc. If some action in (' is enabled in s; and one of the following
holds: either i = 0 or no action in C is enabled in s;_; or m; is in C, then either
teng{a) <t + 0, (C) or there exists j > ¢ with t; < t; + b,(C) such that either m; isin C
or no action of C is enabled in s;.

2. Condition 2. above.

Intuitively, timed semi-execntions represent sequences in which the safety conditions de-
scribed by the boundinap are not violated. The following lemmas say that such a sequence can
be extended to a timed execution in which the liveness conditions described by the boundmap
are also satisfied.

Lemma 2.1 [f o is a timed semi-erccution of « timed automaton A and no locally controlled
action of A is enabled in the final statc of a, then o is ¢ timed execution of A.

Proof: Straightforward. n

Lemma 2.2 Let {a;}$2, be a sequence of timed semi-ezecutions of « timed automaton A such
that

1. for any i > 1, «a, is a prefir of a1, and

2. him_y toq(a,) = x,

Then there erists an infinite timed cxrccution o of A such that for any i > 1, a; is a prefir of
.

Proof: Straightlorward. .

O




Lemma 2.3 Let A be a timed automaton having finitely many classes in its partition. and let
a be a timed semi-cxrecution of A. Then there is a timad cxecution o' of A that ertends a,
such that only events from classcs with finitc upper bound occur in o after .

Proof: First, for each class (" and ecach finite timed semi-execution J, we define a time
deadline(3.(') to represent the latest time after the end of 3 by which an action of (" must
occur in order to satisfy the liveness requirements. The definition is by induction on the number
of events in J. In the base case .3 consists of a single start state sg, and we define. for any
class C such that some action in (" is enabled in s,. deadline(3.C) = b,(C). Otherwise. let
deadline(,3.C) = <. Let

3 =sg,(Fr 1) S1. .- .(,TJ.IJ').SJ

and assume we have defined deadline for all finite timed semi-executions with j — 1 events.
Denote

131230.(71'1.11)..31, -(7rj~1,lj—1)-5j-l .

Let m; € C: then deadline(8.C") = t, + b,((") if some action in (' is enabled in s,. and
deadline(3,(") = ~, otherwise. For any class D # C, deadline(3,D) = t; + b, (D) if some
action in D is enabled in s, and no action in D is enabled in s;_1; if some action in D is enabled
in s, and also some action in D is enabled in s;_;. then deadline(3. D) = deadline(3'. D): if
no action in D is enabled in s;, then deadline(3,D) = o

We construct o as the limit of a sequence {a;}%, of timed semi-executions, where a; = a.
Starting from a;. we define a;4; as follows. Let C be a class that has an action enabled in
the final state of a;, for which the value of deadline(a;,C) is minimum among all such classes.
Then ;41 is obtained from «; by appending a sirele enabled action from C, occurring at time
deadline(a;,C'). If there is no such class. then we define a;y; = «a;. Clearly, a; is a timed

semni-execution.

It remains to verify that a’. the limit of the a, is a timed execution. There are three cases.

l. o’ is a finite sequence. Then a' = a; for some ¢ such that no action in any class is enabled
in the final state of a,. Then Lemma 2.1 implies that a’ is a timed execution.

2. o’ is an infinite execution in which the time component is unbounded. Then Lemma 2.2
implies that a’ is a timed execution.

3. o' is an infinite execution in which the time component is bounded. The facts that there
are only finitely many classes and the values of 0,(C) are nonzero imply that there is
some bound ¢ > 0 such that 1,,4(ci41) > t.a(0;) + € for all i. This implies that this
case cannot occur.

'These rules are similar to the rules given for maintaining the variable Ltime(C') in the time(A} definition
in the following subsection.




For any timed execution or semi-exceution o we define sched{a) to he the sequence of
ractiondime) pairs ocenrring in oL e a with the states removed. We sav that a sequence of
factiontime} pairs is a towed sehodule of A it is sehedia). where a is a timed exeention of
A0 We also define behia) to be the subsequerce of sehed(a) consisting of external (input and
onrput ) actions and assoctated times. and say that a sequence of (action,time) pairs is a fimed
be bacvror of A i is belilla). where o 1s a timed execution of A,

Definitions for composing timed automata 1o vield another timed automatou. analogous 1o
those for 10 automata. are developed iu [MMTNS]. We model real-time systems as comnposi-
tions of timed automata. (Real-time s' .tems were also modeled in this way in [L8S].)

2.3 Adding Time Information to the States

We would like to use standard proof techuiques such as invariant assertions to reason about
timed automata. In order to do this. we find it convenient to define an ordinary I/0 automaton
time( ) corresponding to a given timed automaton 4. This new automaton has the timing
restrictions of A built into its state. in the form of predictions about when the next event
i each class will occur. Thus, given any timed 1/0 automaton A having boundmap b. the
ordinary I/0 automaton time(A) is defined as follows.

The automatca time( 1) has actions of the form (7.t). where 7 is an action of 4 and ¢
is a nonunegative real number. Eacl of its states consists of a state of A, augmented with a
time called Ctime and. for each class (7 of the partition. two times, Ftime(C') and Ltime(C).
C'time (the “current time™) represents the time of the last preceding event, initially 0. The
Ftime(Cyand Ltime{(") components represeut. respeciively, the first and last times at which
an action in class (" is scheduled to he performed {assunming some action in (7 stays enabled).
{We use record notation to denote the various components of the state of time(A): for instance.
s.Astate denotes the state of .1 included in state < of time(A).) More precisely, each initial
state of time( A} consists of an initial state s of A, plus C'time = 0. plus values of Ftime(()
and Ltime(C") with the following properties. If there is an action in C enabled in s. then
Ftime(C") = b(C)and Ltime(C') = 0, {C). Otlierwise, Ftime(C) = 0 and Ltime((') = .

If {w.1)is an action of fimc( ). then (s'. (7. 1).5) is a step of time( A exactly if the following
conditions hold.

Lo (" Astate.mos. Astate) is a step of A,
2.8 Chime < b= s e,
3. 0 = is a locally controlled action of -Uin elass €' then

(a) " Fltine(C)y <t < S Lthme(().




biaf some action i s enabled i oscAsiatos then s B oc(CY = 8+ b () aud
sl te O b5 b0 and

reb i noaction tu € is enabled in s bsfate then s 2 time(C) = Qand s. Ltime((') = x.
FoFor all elasses [ sueh that 505 a0t in class D,

ta) < S time (D,

byl some action in D is enabled in s.Astate and some action in D is enabled in
Sostate then s Ftime(D) = &' Ftime( D)y and s.Lttmc(D) = " Ltinmie (D).

icy if some action in D is enabled in ~ \stale and no action in D is enabled 1w & Astate
thow s ftime( DY =t + b (D) and <. Ltime(D)y =1t + b,(). and

fdi oo action in D s enabled in s.Asfate then s, Ftime ' D)y = Oaund s.Ltimdc(D) = x.

Ne o that property Jdga) ensures that an action does not occur if any other class has an action
that st be scheduled first. The partition classes of fime( A) are derived one-for-one from the
classes of A (although we will not need them in this paper).

The finite executions of !ime(A). when the states are projected onto their dstate compo-
nents, are exactly the same as the finite prefixes of the timed executions of A. This implies
that safety properties of a timed automaton A can be proved by proving them for time(.1}.
e.g.. using mvariant assertions.

3 Problem Statement

Loreither the cen.ralized or distributed case, we assume that there are n modules called moving
parts. n modules called operato -, plus some modules comprising the computer system. The
actions of the complete system. exclusive of any internal actions of the computer system. are
REQUEST(7). GRANT(7) and FINISH({). [or 0 <7 < n~1. Each operator(i) has input action
GRANT(1) and output action REQUEST(:). Each movingpart(i)hasinput action GRANT({)
and output action FINISH(i). The computcr system has input actions REQUEST(?) for all i
and output actions GRANT(¢) for all i. See igure 1.

Let morvingpart(i) be a particular timed automaton with the given signature. having a
state consisting of one component. GRANTED. a Boolean variable. initially false.

GRANT(/)
Effect:
GRANTED = true

FINISH(1}
Precondition:

GRANTED = true

9




UerATIN | REQUESTY) S/5er

A GRANTI)

FINISH(i)

- J

Figure 1: The system architecture.

Effect:
GRANTED := false

There is only one class in the partition for movingpart(i), a singleton containing the one
action FINISH(:). The boundmap associates the interval [0, m] with this class. As described in
the Introduction. the timed executions of this timed automaton have the property that, within
time m aft.r a GRANT(t) occurs, a FINISH (i) must also occur - that is, movingpart(i) “stops
moving”.

Now conside. . perator(:). It is described as an automaton with the maximum amount
of freedom w - r. to allow to the operator. Let operator(i) be the timed automaton with
the appropria.e signature, having a state consisting of one component, PUSHED. a Boolean
variable, initially *

GRANT(1)
Effect:
PUSHED := faise

REQUEST(:)
Precondition:
PUSHED = false




Effect:
PUSHED := true

Again, there is only one (singleton) class in the partition for operator(i). We do not want to
insist that the operator push the button within a particular amount of time after a GRANT.
(It may never do so, in fact.) Thus, we define the boundmap to assign the interval {0,oc] to
this one class.

The requirement for the computer system is that when ii is composed with the given
operators and moving parts, the resulting system has all its behaviors satisfving the following
conditions:

1. Request well-formedness: For any 0 </ < n -1, REQUEST(¢) and GRANT(i) actions
alternate, starting with a REQUEST(/).

2. Moving part well-formedness: For any 0 </ < n— 1, GRANT(i) and FINISH(7) actions
alternate, starting with GRANT(:).

3. Mutual exclusion: There are never two consecutive GRANT events without an interven-
ing FINISH event.

1. Eventual granting: Any REQUEST(7) event has a following GRANT(i) event.

We measure the performance of the system by the worst case response time, i.e., the longest
time between REQUEST(i) and the next subsequent GRANT(:) in any timed behavior.

4 A Centralized System

We first consider the case of a “centralized” computer system to solve this exclusion problem.
In this case, the architecture is as follows. There are two modules (timed I/O automata), the
manager and the clock. The c¢lock has only one action, the output TICK, which is always
enabled. and has no effect on the clock’s state. It can be described as the particular one-state
automaton with the following steps.

TICK
Precondition:
true

Effect:
none




REQUEST!(i)

»  manager TICK
GGRMT(i)

Figure 2: The architecture of the centralized control system.

The boundmap associates the interval [cy,c;] with the single class of the partition. This means
that successive TICK events will occur with intervening times in the given interval.

The manager has input actions TICK and REQUEST(:) for all i, and output actions
GRANT({). It is an arbitrary automaton, subject to ihe restriction that it has only a single
class in its partition. (This says that it is really a sequential process - it cannot be running
several processes in parallel.) We associate the boundmap [0, ] with the single class of locally
controlled actions. This means that successive locally-controlled steps of the manager are done
within the given intervals (if there are any enabled).

The computer system is the composition of the manager and the clock, (with the I/0
automaton hiding operator applied to hide the TICK actions). See Figure 2.

Note that the timed automaton model forces us to model the step time of the manager
process explicitly. Other models (e.g., the one used for clock synchronization in [WL88]) might
avoid this level of detail by hypothesizing that the manager’s steps are triggered only by input
events such as clock ticks or requests. We regard such a model (informally) as a limiting case
of our model, as the upper bound on manager step time approaches zero.

4.1 Upper Bound
4.1.1 The Algorithm

The following simple zlgorithm for the manager process solves the problem. The manager
simply puts requests on a FIFO queue. If there is a pending request, the manager issues a
GRANT signal to the node whose request is first on the queue, and sets a timer to measure
the time until the moving part stops moving. When the timer goes off, the manager repeats.

There is some subtlety in determining the minimum number of clock ticks that guarantee
that time m has elapsed since the GRANT. At first glance, one might be tempted to count
|m/e1] + 1 ticks, but a careful examination shows that this might cause a violation of the
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exclusion property. if a TICK happens immediately after the GRANT, and the next GRANT
happens immediately after the last TICK. Waiting for [m/cy] + 2 suffices to overcome this
difficulty. but the lower bound presented in Suhsection 4.2 suggests that this might not be
optimal. In order to achieve the best possible timing performance. the algorithm only grants
immediately after a clock tick. and the timer is set to {(m + {)/e;| + 1 clock ticks.

In addition to the REQUEST and TICK inputs and GRANT outputs already specified,
the manager has an internal action ELSE. This action is enabled exactly when no output
action is enabled: this has the eflect of ensuring that locally controlled steps of the manager
occur at {approximately) regular intervals, as determined by the manager’s boundmap.

The manager’s state is divided into components:

TICKED holding a boolean value, initially frue;
QUEUE holding a queue of indices i € [0..n — 1]. initially empty;
TIMER holding an integer, initially 0;

The manager’s algorithm is as follows:

REQUEST(i).0<i<n-1
Effect:
add ¢ to QUEUE

TICK

Effect:
TIMER := TIMER -1
TICKED := true

GRANT(#),0<i<n-1
Precondition:
i is first on QUEUE
TIMER <0
TICKED = true
Fffect:
remove i from front of QUEUE
TIMER := |(m +1)/e1} + 1
TICKED := false

ELSE
Precondition:

QUEUE is empty or TIMER > 0 or TICKED = false
Effect:

TICKED = false




4.1.2 Correctness Proof

Let A be the composition of the four given kinds of timed automata - operators, moving parts,
manager and clock. This subsection is devoted to proving the following theorem.

Theorem 4.1 Algorithm A is a correct centralized resource allocation algorithm.

We prove correctness using automaton time(.4). as defined above. In this case, the system
state is augmented with the variable ('time, plus the variables Fiime and Ltime. for the
following partition classes:

I. REQUEST(:) for each ¢. which contains the single action REQUEST(i).

2. FINISH({(:) for each /. which contains the single action FINISH (7).
3. TICK . which contains the single action TICK, and
4. LOCAL. the locally controlled actions, which contains all the actions GRANT(i).0 <

i < n-1and the ELSE action.

Initially. we have Ftime(REQUEST(i)) = 0. Liime(REQUEST(!)) = oo. Ftime(FINISH(1)) =
0 and Ltime(FINISH(i)) = oo, Ftime(TICK) = ¢y. Ltime(TICK) = ¢5. Ftime(LOCAL) = 0
and Ltime(LOCAL) = 1.

The proof of mutual exclusion rests on the following invariant for time( 4).

Lemma 4.2 Let s be a reachable state of time( ). Then the following all hold:

1. If FINISH(i) is enabled in s.Astate, then
(a) s. TIMER > 0,
(hy s.Etime(TICK)+ (s. TIMER — 1)ey > s.Ltime( FINISH(3)). and
(c) FINISH(j) is not enabled in s.Astate, for any j # i.

2. If s TICKED then s.Ftime(TICK) > s.Ltime(LOCAL) +¢; - [.

Thus. if a part is moving. the manager’s TIMER is positive. Moreover, the TIMER is large
enough so that waiting that number of ticks would cause enough time to elapse so that the
part would be guaranteed to have stopped moving. Property 1(c) implies mutual exclusion.

while property 2 guarantees a lower bound on the time till the next TICK, if no LOCAL step
has occurred since the previous TICK.

The proof of correctness is done in careful detail: since it is quite straightforward, we include
itin Appendix AL
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Proof: (of Theorem 4.1) Lemma 4.2 implies mutual exclusion. Moving part well-formedness
follows easily from the same lemuna and the definition of the moving part. Request well-
formedness follows from the definitions of the operators and the manager. The remaining
condition, eventual granting. can be argued from the queue-like behavior of the manager and
the fact that the clock keeps ticking. (This latter property also follows from the formal proof
of the upper bound on response time in the following subsection.) [ |

4.1.3 Response Time
Now we prove our upper bound on response time for the given algorithm .
Theorem 4.3 dssume that | < ¢y. The worst case response time for algorithm A is at most
nie;([m+D/ey] + D]+ 1L
The proof of this theorem requires scveral lemmas.
Lemma 4.4 [n any reachable state there are at most n entrics in QUEUE.

Proof: We have already argued that all timed executions of the system are request well-
formed, i.e., REQUEST(i) and GRANT(i) alternate for any 0 < ¢ < n — 1, starting with
REQUEST(:). The preconditions for REQUIST(i) and the operation of the manager imply
that when REQUEST(i) happens. i is not in the queue. A simple induction implies that in
any reachable state of the system. { appears only once in QUEUE. |

Lemma 4.5 In any reachable state s, s. TIMER < |(m +1)/eq] + 1.
Proof: By an easy induction. [ |

Lemma 4.6 Let s be any state occurring in a timed ezecution, in which s. TIMER < k, for
k> 1. Then (at least) one of the following two conditions holds.

1. s.TIMER <0 and s. TICKED = true. or

2. the time from the given occurrence of s until a later TICK event resulting in TIMER < 0
is bounded above by ¢, - k.

Proof: Suppose that it is not the case that s TIMER < 0 and s. TICKED = true. Then a
GRANT cannot occur until a state is reached in which TIMER < 0 and TICKED = true.
and this condition requires at least one TTC'A to occur after the given occurrence of s. The
bound follows from the upper bound on clock time. the way the TI/(C'K" actions manipulate the
TIMER., and the way the variable TICKLID gets set. n

-
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Proof: (of Theorery 1.3) When a request arrives. it is at worst in position n on the QUEUE,
by Lemma -1 By Temmas 1.5 and 4.6, either TINER € 0 and TICKED = true at the time
when the request acrives, or else within time c ({tm +1)/e ] + 1) a TICK event (call it x;)
ocenrs which sets LIMER to 0. In the former case. there must he a TICK event occurring
prior to the request that sets TINMER < 0. with no intervening local events; let #; denote this
TICK event. In evther case, within tme { after 7; (but after the request) the first entry gets
its request granted and gets removed frow the QULEUE. and TIMER is set to

Hm+ e+ 1
Sitece [/ < ey within time e, after xp. another TIC'K event 2y occurs, this one decreasing

TIMER ro ([im+ 1)/eq] )

Immediately atter 2. either I'IMER = 0, 0r [(m+{)/c;| > 1:in this latter case, by Lemma
4.6, within at most time co (|[(m +1)/c1]) after o). a TICK event ocenrs that sets TIMER < 0.
Thus. in either case. from event w1 until another TICK event 7 that sets TIMER < 0, at
most

o

<

2[m+0/af + 1)
time elapses. The next entry in the queune is enabled immediately after m,. In this manner. we

can construct a sequence of TICK events, my..... 7, such that the time between 7; and x4,
for each t.1 < i < n, is at most

e ([ + D/en] + 1.

and for any 1 < i < n. the 'th entry on the original queue (if there is any) is enabled after ;.
Hence. within time

nlea(L(m + D) + 1))

the enabling condition is satisfied for the given request. Then within time at most [ afterwards.
the request is granted. This completes the proof of the upper bound on response time. |

Note that this proof requires the assumption that / < ep: in case this assumption is not
made, an analysis similar to the one in the proof above viclds a slightly higher upper bound of

plex([tm+0)/er]+ 1)+ 1] .
Also. note that the limit of the given upper bound, as [ approaches 0.is n-ep([m/ey] +1).

We think of this as an upper bound for this algorithin when it is run on an interrupt-driven
model,
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It follows from the lower bound in Section 1.2 that algorithm A has optimal response time.
This seems to imply that the best policy is to issue a GRANT right after a TICK. This is
apparently because a time estimate done immediately after a clock TICK is the most accurate.

Although this proof is currently written in terms of executions, it seems that the invari-
ant assertion techniques for time-augmented automata developed above could be extended to
handle response time analysis; preliminary results in that direction appear in [LA].

4.2 Lower Bound

Now we turn to proving lowcr bounds. We begin with a fairly simple lower bound result that is
quite close to the upper bound proved in the preceding subsection. but does not match exactly.
The gap between this lower bound and the upper bound depends on the manager’s step time
and the roundoffs. Since we consider these to be very small, for practical purposes one might
be satisfied with this simpler lower bound. However, it is interesting theoretically to note that
in this case, we can obtain a tight bound by a related but somewhat more difficult argument.

Theorem 4.7 The worst case response time of any centralized resource allocation algorithm
is at least

n-m(ca/cy).

In order to see why this is so. define a timed execution or timed semi-execution to be slow
if the times between successive TICK events (and the time of the first TICK event) are exactly
¢2. We have:

Lemma 4.8 Let a be a slow timed execution of a correct centralized resource allocation al-
gorithm. Then the time between any two consecutive GRANT events in « is strictly greater
than

m(ca/cy).

Proof: If this were not so, then we could “retime™ the whole timed execution by multiplying
the time at which each event occurs by ¢y/¢y (without changing the ordering of events), re-
sulting in a nvew timed execution in which the time between the two GRANT events is at most
m. The timme between clock ticks is now ¢;, so the resulting sequence is a timed execution.
Then moving the FINISH event corresponding to the first GRANT event to the point just
after the second GRANT event (to occur at same time) vields another timed execution, this
one violating mutnal exclusion. a

Proof: (of Theorem 4.7) We create a slow timed semi-execution in which a REFQUEST(0)
avent occurs, and immediately after the corresponding GRANT(0) event (and at the same
time} a sequence of




REQUEST(0)..... REQUEST(n - 1)

events occur. Now extend this timed semi-execution (keeping it slow) until ali these requests
are fulfilled. By Lemma 4.8 the time between anyv two of these GRANT events is at least

miey/eq).

Let GRANT(J) be the last GRANT. The time from REQUEST(j) until the corresponding
GRANT(j) is at least

n-mfey/er).
n

Now we present the more delicate argumeunts necded to prove a lower bound that matches
the upper bound given in Section 4.1. Note that the only differences between the lower bound
to be nroved and the one already proved in Theorem 4.7 are the presence of the [ terms
describing bounds on the manager’s step time and the careful treatment of roundoff. Still, it is
interesting that the bound can be improved in these ways to match the upper bound exactly.

Theorem 4.9 Assume that | < ¢;.2 Then the worst case response time of any centralized
resource allocation algorithm is at least

nlez({m+ /) + D]+ 1L

An I/O automaton is called active if in every state there is a locally-controlled action
enabled. (Recall, for example, that the manager in the algorithim of the preceding subsection
was made active by the inclusion of the ELSE action.) Before procecding with the proof of
the theorem. it is useful to prove the following lemma, whicl claims that there is no loss
of generality in assuming that the manager is active. As in the previous subsection. denote
by LOCAL the class of «ll the actions that are locally controlled by the manager (including
GRANT(1), for all 7).

Lemma 4.10 Suppose that A is a centralized resource allocation algorithm with response time
< b. for a rcal number b. Then there is another such algorithm A’, with response time < b, in
which the manager is active.

“Notice that a non-strict inequality is used in this assumption, whereas a corresponding assumption for
Theorem 4.3 uses a strict inequality. This reflects the diflerence in the kinds of reasoning needed for lower and
upper bound results.




Proof: Given A, we prodiace A’ by adding a new internal action NULL to the manager.
The stuns associated with tlis action are exactly these triples of the form (8. NULL, s), where
s = s and no other locally controlled action of the manager is enabled in s'. Clearly, the
manager is active in .1". We claim that .1’ solves the problem and has response time < b. In
order to see this, is suffices to show that every timed behavior of 4’ is also a timed behavior
of .

So let

! ! ! / ! I ! ! !

a = 50-(7"1-11)*5‘19"'~5i—l'(7ri~ti)w3i .....

be any timed execution of A’. Construct a. a new timed sequence, by removing all NULL
steps from a’. Assume

a = So,(?’(’l,tl),b‘].....S,_].(Tri,t,'),sl'.....

and let II be the mapping from the indices of events in a to the indices of the corresponding
events in o', and set 1[(0) = 0. Note that, for i > 1. if j = II(). then 33- = 3, t;- = t;, and
7, = i, We claim that a is & timed exccution of A. Then it follows that every timed behavior
of A’ is a timed behavior of 4.

All we have to show is that « satisfies the boundmayp of A. The only interesting case is the

class LOCAL., and since the lower bound for this class is 0, we have to check only the upper
bound, .

Fix some i such that in s; some locally controlled action of the manager is enabled, and
either ¢ = 0 or no locally controlled action of the manager is enabled in s;_y, or =, is a locally
controlled action of the manager. We must show that within time [ after ¢; either a locally
controlled action of the manager occurs, or there is a state in which no such action is enabled.
Let ; = II(:). It must be that some locally controlled action of the manager is enabled in
s;, since some such action is enabled in all states of the manager in A’. We first show that
a locally controlled event 7 of the manager must occur in o’ within at most [ time after /.
There are two cases:

Case 1: ¢ = 0 or 7; is a locally controlied action of the manager in A.

If ¢ = 0. then it must be that j = 0. If 7; is a locally controlled action of the manager in A,
then it must be that 77 = 7,. In either case, as the manager in A’ is active, a locally controlled
event = of the manager must occur in ' within time at most [ after ¢/, by the fact that o’ is
a timed execution of A’ and satisfies the boundmap.

Case 2: i > 1 and no locally controlled action of the manager is enabled in s;_y.

Then m; € LOCAL, and hence m; ¢ LOCAL. Let k be the largest index of a locally
controlled event in o’ that has an index < j (0 if there is no such event). The fact that the
class LOCAL is always enabled in o’ implies that within time / from (] a locally controlled
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event of the manager must occur in o', By the way & was selected this event must happen
after &/ so the fact that ¢} > i implies that a locally controlled event 7 of the manager must
occur in a’ within time at most [ after lj.

In both cases. it 7 # NULL. then #. with the same time, appears in a. which suffices. If
7 = NULL, then the definition of A" implies that in the state just prior to 7 in &, no non-null
locally controlled action of the manager A is enabled. Then no locally controlled action of the
nmanager is enabled in the corresponding state in «, which suffices. n

Now we return to the task of proving Theorem 4.9. The proof will proceed by iterative
coustruction of a particular slow tinied execution. A major step in the construction is forcing
a GRANT event to happen only in certain situations, as specified and proved in the following
technical lemma.

If i 1s an index with 0 < ¢ < n — 1, we say that ¢ is unfulfilled in a timed semi-execution « if
the number of REQUEST, events in « is strictly greater than the number of GRANT, events
in a. We sav that a timed execution or timed semi-execution a is heavily loaded starting from
time tif for all times t < ' < t,.,4(a ). all indices are unfulfilled in the prefix of & consisting of
all the events occurring up to and including tinie ¢/, We say that an action is an ELSF action
if it is a locally controlled action of the manager other than a GRANT; ELSE eveunts and steps
are defined similarily.

Lemina 4.11 Let 4 be a centralized resource allocation algorithm with an active manager,
and let o be a slow timed scmi-exceution of A, Assume that there are unfulfilled indices in
o, and LOCAL and TICK cvents occur in o at time b q(a). Then there exists a slow timed
semi-crecution 3 extending o sueh that for some 1. 0 <1< n— 1.

sched(.3) = schedlao) (GRANT(1).t) (REQUEST(i), t) (FINISH(i),t),

where t = t (o), LOCAL and TICK evenls occur in ag at tinic t, and there are no

REQUEST or GRANT events ino.

Notice that if a is a heavily loaded starting from time ¢ then »» is also heavily loaded starting
from time ¢.

Proof: Assume by way of contradiction that there does not a exist a timed semi-execution
with the desired properties. We will extend o to an infinite timed execution in which no
GRANT events occur.  As therve are unfulfilled indices in a this contradicts the eventual
granting property.

This is done by construeting. inductively starting from j = 0, successive slow timed semi-
executions, am,, each extending the previous one. such that for every j:

gt

I. There are no REQUEST or GRANT events in a,.
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2. LOCAL and TICK events occur in g; at time t.,(a0;).

3. If 7 > 0 then tepq(ao;) > tpglao;_1) + ¢y,

We start with oy being the empty sequence. Clearly. [. and 3. hold. and tle assumptions of
the lemma imply that 2. holds. Now. assume we have constructed ;. and let s; Le the system
state resulting after ao;. There are two cases:

Case I: There is an execution fragment of ithe manager alone. ¢’. starting from state ;. which
consists of a s2quence of zero or more ELSE cvents followed by some GRANT(i) event.

Then let 5 be any timed semi-execution that extends ao; such that
sched(3) = sched(a o o) (REQUEST(i),teata0;)) (FINISH (i) tepalao,)).

where the events of ¢’ are all timed to occur exactly at time f.,4(ao;). Then 3 has the
properties required by the lemma: it ends with GRANT(¢). REQUEST(1) and FINISH(:)
events, LOCAL and TICK events occur in .3 at time f.,4(a,) = t.,q(8), and there are no
REQUEST or GRANT events in the prefix of a0’ preceding the final GRANT(7) event. This

is a contradiction to the assumed nonexistence of such a timed semi-execution.
Case 2: There is no such execution fragment.

In this case, we can extend ao; by allowing ELSE events to occur. at arbitrary allowable
times, ending with an ELSE event and a TICK event, (occurrng in that order) at time
tend(ao;) 4+ co. This is possible since the algorithm is active. Let ao;41 be an execution
extending ao; such that

sched(aoji,) = sched(ao;é) (7, tenqlao;) + o) (TICK t . q(a0;) + c2) .

where all events (if any) of 6 are ELSE events, and « is an ELSE event.

From the way o041 was constructed, it follows that ac;4; is slow. and that it has the
following properties:

1. There are no REQUEST or GRANT events in a;4,.
2. LOCAL and TICK events occur in 0,4y at time t.,4(@041).
3. tend(a0j+l) > tend(aaj) + c2.

This completes the construction of the timed semi-executions ao;.0 < j < oo,

Now Lemma 2.2 implies that there exists an infinite timed execution ao extending all
the ag,. Since there are no GRANT events in ¢ and there are unfulfilled indices in a. this
contradicts the eventual granting property. |
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Now we are ready to preseut the main proof.

Proof. (of [heorem 1.9) Assume that we have a particular centralized resource allocation
algorithm. By Lemma 0100 we may assume without loss of generality that the manager is

active. We explicitly construct a {~low) timed execution in which the response time for a
particular grant is at least

nilom e+ ey + 1.

We first construet an initial section, 3y, We begin by allowing some LOCAL events to
ocenr (at arbiirary allowable times). euding with both a LOCAL event and a TICK event
occurring at exactly time e, in that order. Notice that by the grant well-formedness property
these LOCAL events must be FLSE events, We let

REQUESTIOy . REQUEST{(1).. ... REQUEST(n — 1)

events Liappen mmediately after these FLSE and TICK events, also at time ¢,. Formally,
et 3 be a timed semi-execution that extends another timed semi-execution & containing only
FELSE ovents, snch that

sehied 3y) = sehed{é) (. o) {TICK (o) (REQUEST(0).03) .. (REQUEST(1 = 1).¢3)
where 7 1s an ELSE event, Note that 0., ... n—1are unfulfilled indices in 3y, and that LOCAL
and TTCRK events ocenrin 3 at time e, = 1,4 Jo ) furthermore. note that Jg is heavily ioaded
starting from time {5 =1, 4.3 = 2.

P4

Starting frem 3y, we construct successive proper extensions Jy.....,3. .... such that for
ecach B > 1..3; is a slow timed setui-execution of the form g _ v, that ends at time ty = teng( 30 ).
that is heavily loaded starting from time #y. and that has the following properties:

Lo ends with GRANT (i), REQUEST( ) and FINISH(ji) events. occurring in that

order at time {.
2. There are no other REQUEST or GRANT events in =,

3. A LOCAL event (other than the GRANT(j)) and a TICK evencoccur in gg at time .

The construction is done inductivelv: the base case is the construction of . Since 3 has
a LOCAL and a TICK event at time t,, 40.3). aud there are unfulfilled indices in 35. we can

apply Lermyma 101 to get an execution . with the properties above.

For the inductive step assume we have constructed a slow timed semi-execution 3i_;. for
ko> 1owith the above properties: we show how to construct J. Since 3;_y is heavily loaded
starting at time /oo and LOCAL and TICK events occur in 3y at time #_;. we can apply
Lemma L1411 to 3.y, and get a slow timed semi-execution 3, that extends 3x_; such that

i~
[




B

~

B

T

BO Y1 Y
Y Y / \
t, £, o £, t,
] I | ]
GRANT (j ) GRANT (J, ) GRANT(j )

Figure 3: The timed cxecution Sk.

sched(By) = sched(8;_10%) (GRANT(jk), tk) (REQUEST(jk), k) (FINISH(ji): te )

where ty = teng(Bk-10%), LOCAL and TICK events occur in fBx_10k at time t, and there are
no REQUEST or GRANT events in 0. Let v, be such that

3 = Bre- Yk -

Clearly, 3k has the required properties.

The timed execution 3 is depicted in Figure 3.

Claim 4.12 For any k > 1, there are at least
L(m + 1)/61J +1
ticks in segment vx of Bk.

Proof: Suppose this is not the case. for some fixed k. Then we modify Bk to get a new timed
semi-execution J;, in which the mutual ezclusion property is violated.

First, we do some retiming without changing the order of any of the events. Segment Yx of
3 is “shrunk” in g, so that all ticks contained within segment 7 take time exactly ¢; (rather
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than ey as e S0 Moreovers the GRANT o0 REQUEST(ji_1) and the FINISH( i)
eveuts ocenrting at time oo are timed to oceur at time 4y + Lo some FLSE steps after
FINISH G po - ianad belore the next THCK may need also to have their times increased slightly

to mauntaan monotontenty, By the faet that £ <0 e and the fact that there is a LOCAL event

preceding GRAN Do pnowith the same time assigianent, it follows that the resulting sequence

i~ a timed execation.,

Wenow obtain o7 by novine FINISH{ 1) from time t,_y +/ to time f. after GRANT{ji).
We show thar 37 is @ timed semii-execution, by showing that moving the FINISH event to a
Later thme does not violate the i apper bound on the time between GRANT(jr_y) and the
corresponding FINISHi 10 By the assumption. there are at most (e + 1)/ey] ticks in
section e As GRANT 0 3 occurs at time ey 4+ [, wlile FINISH(ji_1) occurs at time #y.

the total thne between these 1wo evernts is al tmost
tey — D+ oq et ./J’,v’f',j -1 <.

So we hiave obtained o timed semi-execution in whicl the mutual cxelusion property is violated.
By Lemina 230 9, can be extended 10 a tinied excention: this contradicts the correctness of
the aleorithm. thas proving the Claim. ]

Thre elaim hupiies that
teor = 4o 2 et + Dideg )+ 1)

for anyv A > 1. beenase 3, is slow,

We continne the proot of Theorem 19, Siuce for every b > 1, .3 is heavily loaded starting
from time £y and the algoritlinn satisfies the ceantual granting property, there exists k" such
that for every /.G < ¢ < — 1 at least one GRANT(/) event appears in .3;. at or after time f,.
By the same reasoning. there exists £ > b such that for every i. 0 < i < n — 1 at least one
GRANT G »vent appeats iu g after time . Tt follows that there is some 7. 0 < 7 < n — |
for whicli there are two consecntive GRANT(7) events in Jiv having at least n — 1 intervening
GRANT( i events for j # 7. Suppose that the first of these GRANT(1) events occurs at time
e, and the second at time g, 00t must be that &y — &y > n. Note that the REQUEST(7) event
correspotding to the second of these GRANT(/) events occurs at time {y,. By the remark
after Claim 112 the total amonnt of time from time fg, in J,. when REQUEST(i) occurs.
antil the corresponding GRANT(7) occurs. at time 1y, is at least

el + Dijegp + 1)

We now construct from S a timed semi-execntion & in which the GRANT(ji,) event
occirs at time - Loretiming later events as necessary to maintain monotonicity. The timed
.

seduieqiee & is o timed semi-execution stnee I < e, sand sinee there s a LOCAL event preceding

CRANTyar tie f o Ji,0 It follows that the total amount of time from time li, in &,
when REQUEST{ ) ocenes, untit the corresponding GRANT() occurs at time li, + 105 at

least




nley([im+0O/er] + D]+ 1.

Since & can be extended to a timed executiou ( By Lemma 2.3) the Theorem follows. ]

We note that Theorem 4.7 seems quite robust in that it can be extended to any reasonable
model. including those in which the manager takes steps only in response to inputs. However.
the better lower bound in Theorem 4.9 depends more heavily on the features of the timed
automaton model. Note that the limiting case of the lower bound in Theorem 4.9 is

n[tm/ey | + e, .

which is slightly better than the lower bound given by Theorem 4.7.

5 A Distributed System

Now we consider the case where the computer system is distributed. We assume that the events
concerning the different moving parts occur at separate manager processes p;,0 <1 < n - 1.
which communicate over unidirectional channels. More precisely, for each ordered pair (¢, j),
i # j, weassume that there is a channel automaton channel(, j) representing a channel from p;
to pj, having SEND events as inputs and RECEIVE events as outputs. The channel operates
as a FIFO queue; when the queue is nonempty, the channel is always enabled to deliver the first
item. All RECEIVE actions are in the same partition class, with associated bounds [0, d]; this
means that the channel will deliver the first itemn on the queue within time d. Also. we assume
that there is a separate clock. clock(7). for each process p,. It is similar to the centralized
clock described earlier, with output action TICK(¢) that is an input to p;, and with associated
bounds [¢1, cp]. See Figure 4.

If the clocks are perfectly accurate, i.e., ¢; = ¢2, then since all processes start at the same
time, there is a very simple algorithm that assigns to each process a peiiodic predetermined
“time slice” and whose worst case response time is n - m (plus some terms involving and ¢
and [). This is optimal.? So, for our lower bound we will assume that ¢; < c3.

*In fact. even if we deviate from the model by allowing accurate clocks with non-synchronized starts, there is
an algorithm which selects synchronization points so that its worst case response time is at most n - (m +(d/2))
(plus some terms involving and ¢, and I). A corresponding lower bound can also be proved. A formal
treatment of these results requires several changes to our model, and we prefer not to present it here. The clock
svnchronization algorithm of [LL&4] vields synchronization points that can be used by a distributed allocation
algorithm whose response time is at most n-m + (n — 1)d. Since the lower bound of [LI&1] implies that this
clock synchronization algorithm is optimal. it does not appear that a naive use of clock synchronization produces
optimal resource allocation algoritluns.




process{i) channel(1,]) process(])
GRANT(i) REQUEST(i) GRANT(i) REQUEST(j)

Figure 4: The architecture of the distributed control system.

5.1 The Upper Bound
5.1.1 The Algorithm
The following algorithm implements a round-robin granting policy: The processes issue grants

when they are in possession of a token that circulates on a ring.

Assume processes are numbered 0,...,n — 1 in clockwise order, and interpret i+ 1 to be ¢ +
1 mod n. Each process p; has input actions REQUEST(3), TICK (i) and RECEIVE-TOKEN(i),
output actions GRANT(i) and SEND-TOKEN(¢), and internal action ELSE(¢). The state of
process i is divided into components:

REQUESTED holding a Boolean value, initially false;

TIMER holding an integer, initially 0;
TICKED holding a Boolean value, initially true;
TOKEN holding a value in {not_here, available, used},

initially used for pg, not.here for the other processes.

Process p; executes the following algorithm:
REQUEST(z)
Effect:

REQUESTED := true

TICK{(!)

Effect:
TIMER := TIMER -1
TICKED : = true
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GRANT()

Precondition:
REQUESTED = tru«
TOKEN = available
TICKED = true

Effect:
REQUESTED := false
TOKEN = wysed
TIMER := [(m +1)/e1] + 1
TICKED := false

SEND-TOKEN({) /* to process p;y1 */
Precondition:

TOKEN = used

TIMER <0
Effect:

TOKEN := not_here

TICKED := false

ELSE(1)
Precondition:

neither GRANT(?) nor SEND-TOKEN(:) is enabled
Effect:

TICKED := false

RECEIVE-TOKEN(:)

Effect:
if REQUESTED then TOKEN := available else TOKEN := used

5.1.2 Correctness Proof

Now let B be the composition of all the given timed automata: operators, moving parts.
processes, channels and clocks. This subsection is devoted to proving the following theorem.

Theorem 5.1 Algorithm B is a correct distributed resource allocation algorithm.

As in the proof of the centralized algorithm, we construct the I/O automaton time(B).
This time, the new state components are ("time, plus, for each 7, Ftime and Ltime for the
following partition classes:




l. REQUEST(i), which contains the single action REQUEST(¢),

2. FINISIH(({), which contains the single action FINISH(1),
3. TICK (i), which contains the single action TICK(¢), and

4. LOCAL({). the class of localiy controlled actions of process i, which contains all the
actions GRANT(:). SEND-TOKEN{(I) and ELSE(:).

Initially, we have F'time(REQUEST(i)) = 0, Ltime(REQUEST(i)) = oo, Ftime(FINISH(1)) =
0 and Ltime(FINISH (7)) = oo, Ftimc(TICK(¢)) = ¢y. Ltime( TICK(?)) = ¢a, Ftime(LOCAL(1)) =
0 and Ltime(LOCAL(1)) = L

Let #tokens(i) be the length of the queue in channel(i,i+1). We first prove alemma giving
an invariant for time(B): this invariant happens not to involve any of the state components
that encode time information. The proof appears in Appendix A.2.

Lemma 5.2 Let s be a reachable state of time(B). Then the total number of processes at
which TOKEN # not_here plus the sum of #tokens(i), over 0 < i < n, is ezactly 1.

We now prove another invariant. this one involving the timing information. The result is
similar to Lemma 41.2. The proof is in Appendix A.3.

Lemma 5.3 Let s be a reachablc state of time(3), and let 0 < i < n — 1. Then the following
all hold:

1. If FINISH (i) 1s enabled in s.Astate, then

(a) s. TIMER(:) > 0,
(b) s.Ftime(TICK (i))+ (s. TIMER(i) — l)e; > s.Ltime(FINISH(?)), and
(¢) s. TONEN(i) = used.

2. I[fs.TICKED(i) = truc then s.Ftime(TICK(i)) > s.Ltime(LOCAL(?)) + ¢; - L.
The following corollary implies that mutual exclusion is maintained by the algorithm.

Corollary 5.4 /n any reachable state s of B. if FINISH(7) is cnabled. for some 1, then
FINISH(j) is not enabled for all j # 1.

Proof: Assume to the contrary that FINISH(j) is enabled in s, for j # /. Since FINISH(:)
and FINISH(j) are both enabled in s. invariant lc (proved in Lemma 5.3) implies that

s TOKEN(?) = s. TOKFN(j) = used .




But this implies that the number of processes for which TOKEN # not_here is at least two,
contradicting Lemma 5.2. Therefore. this case cannot occur. n

Proof: (of Theorem 5.1) Corollary 5.4 implies mutual exclusion. Moving part well-formedness
follows fromn the same corollary and the definition of the moving part. Request well-formedness
follows from the definitions of the operators and the processes. Eventual granting can be ar-
gued from the round-robin behavior of the processes; it also follows from the upper bound on
response time proved formally in the following subscction. u

5.2 Response Time
Now we prove the upper bound on response time for the given distributed algorithm B.
Theorem 5.5 The worst case response time for algorithm B is at most

nlea([(m+D/er] + 1)+ d + 2 + 21].

We use the following lemmas.

Lemma 5.8 [In any reachable state s, and for any i,

s.TIMER(i) < [(m+1)/ci} + 1.
Proof: By an easy induction. |

Lemma 5.7 Let s be any state occurring in a timed execution, in which s. TIMER(i) < k, for
k> 1. Then (at least) one of the following two conditions holds.

1. s.TIMER(i) < 0 and s. TICKED(i) = true, or

2. the time from the given occurrence of s until a later TICK (1) event resulting in TIMER(i) <
0 s bounded above by ¢y - k.

Proof: As for Lemma 4.6. [

Say that process p; is operative in state « if s. TOKEN(/) = used. By Lemina 5.2 at anyv
time there is at most one operative process.

Lemma 5.8 If process p; is operative, then the time until process p;yy becomes operative is at
most

29




([(m+ e+ +d+er+ 20

Proof: By Lemmas 5.6 and 5.7, either TIMER(#) < 0 and TICKED(7) = true, or else within
time

(tm+ /e +1) .

a TICK(i) event occurs setting TIMER(i) < 0: in either case, SEND-TOKEN(i) will be

enabled within tline
a(m+D/ e+ 1) .

Within time { after that, SEND-TOKEN({) will occur and RECEIVE-TOREN(7 + 1) will be
enabled (since it is the only message in the channel), and within an additional time d, it will
be exccuted. If there is a pending request at process p;4; when this RECEIVE-TOKEN(i + 1)
occurs, i.e.. if REQUESTED(/+1) = true at this point, then this RECEIVE-TOKEN(:+1) will
set TOKEN(i+1) = available. Then within time ¢o, GRANT(i+1) will be enabled and within
time [ it will be executed, causing process p;4) to become operative. On the other hand, if there
is no pending request, i.e., REQUESTED(: + 1) = false, then the RECEIVE-TOKEN(: + 1)
will set TOKEN(i + 1} = used and thereby cause process p;;; to become operative. ]

Define the distance from process p; to process p; to be the distance between them along
the ring (in the clockwise direction); if i = j we define the distance to be n.

Proof: (of Theorem 5.5) < "unsider the pointin the timed execution at which a request arrives,
say at process p,. We consider cases (one of which must hold, by Lemma 5.2).

1. There is some operative process p;, when the request arrives (where it is possible that
1 = 1). Then the distance from p; to p; is at most n. Applying Lemma 5.8 repeatedly
(at most n times) yields the claimed bound.

2. The value of TOKEN(:) = avatlable for some #. If i = j, then the request will be
granted within time ¢y +1. If { # J. then within time ¢, + 1, process p; becomes operative.
Applving Lemnma 5.8 repeatedly (at most n — 1 times) yields the claimed bound.

3. There is a message in one of the chaunels. say channel(i — 1,i). If { = 7, then the request
will be granted within time d + co + 1. If ¢ # 7. then within time d + ¢; + I, process
pi becomes operative. Applving Lemma 5.8 repeatedly (at most n — 1 times) yields the
claimed bound.

Again, we note that the limiting case of the upper bound as / approaches 0. is

n [c;([m/clj + 1) +l[+(‘2] .
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5.3 Lower Bound

Now we prove our lower bound on worst case response time for arbitrary distributed resource
allocation algorithms. This proof is similar to that of the simple Jower bound for centralized
algorithms (Theorem 4.7) rather than the more complicated tight bound (Theorem 4.9) in that
we do not concern ourselves with process step time or with roundoffs. As a result, this proof
seems sufficiently robust to extend to other reasonable models for timing-based computation.

Note that the gap between our upper and lower bounds for the distributed case does not
only involve process step times and roundofls, but also involves additive terms of d and of n.¢,.

In order to prove this lower bound we must make the assumption that the moving time is
much larger than the message delivery time, more precisely, that (n — 1) -d < m(c¢y3/¢y).

Theorem 5.9 Assume that ¢; < ¢g and that (n — 1) -d < m - (cy/cy). Then the worst case
response time of any distributed resource allocation algorithm is at least

n-ca(mfey)+(n-1)-d.

The lower bound is proved under the assumption that every message is delivered within
time d. This is a stronger assumption than the one used for the upper bound; there, we
only insist that this upper bound hold for the first message on any link. Since the present
assumption is stronger, it only serves to strengthen the lower bound.

In the proof we first show that the round-robin granting policy used by the algorithm of
Section 5.1 is optimal in the following sense: for any “efficient” algorithm, in any execution
in which requests arrive continuously, the order in which requests are first granted must be
repeated in a round-robin fashion.

Once such an order has been established, we extend the execution while fixing a particular
pattern of message delays. After doing this for a sufficiently long time, we retime parts of the
execution by carefully “shifting” certain events, while appropriately retiming other events, to
get the desired time bound.

Recall the definition of a heavily loaded timed execution or timed semi-execution from
Section 4.2. In a manner similar to the centralized case. we define a timed execution or timed
semi-execution to be slow if, for each ¢, the timmes between successive TICK (i) events (and the
time of the first TICK(7) event) arc exactly ¢3. The following lemma is the distributed version
of Lemma 4.8,

Lemma 5.10 Let o be a slow timed execution of u correct distributed resource allocation al-
gorithm. Then the time between any two consecutive GRANT events in o is strictly greater
than

cp(mfey) .
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The next lemma shows tiiat if an execution is heavily loaded. the best policy (for a “ef-
ficient™ algorithm) is to grant the resource in a round robin manner. because changing the
granting order will cause the response time to exceed a bound higher than the one we are
attempting to prove as a lower bound.

Lemma 5.11 Let I8 be a distributed resourcc allocation algorithm with response time at most
(n 4 1)-eainifey). Let a be a slow timed execution of B that is heavily loaded starting from
time t. Then therc crists some permutation, p. of {0,...,n — 1} such that the subsequence of
all GRAN'T events that occur in o after time t is of the form

GRANT(py)e. . .. GRANT(pp 1 ). GRANT (o). ... GRANT (priy ), .. ..

Proof: Suppose by way of coutradiction that there is no such permutation p. Then there is
some index, ¢, for which two GRANT{{) avents 7y and 7 occur (at times 1, and ¢y respectively)
after time t. where there are at least n GRANT(J) events, j # i, intervening between m; and

T,

By Lemma 5.10, the time between any two consecutive GRANT events from among this
set of n +1 GRANT events is strictly greater than cp(m/cy). Therefore, the time between
and 72 is strictly greater than

(n+1)-calmfey).
Since a is heavily loaded, a REQUFST({) event must follow 7, and occur at time ¢;. Since
that REQUEST(:) is fulfilled by m; at time ¢, the response time for that REQUEST(i) is

strictly greater than (n + L)-e2(m/ep), which contradicts the assumed bound on the response
time of the algorithm. [

Proof: (of Theorem 3.9) Assume by way of contradiction that there is some algorithm that
always responds within time

necymfer)+(n—1)d.
Bv assumption

(0= 1)yd < mley/er),
which implies that

neepnifer)y+F{n - 1)< (n4+1)-ecxtmfey).
Thus. the response time for the algorithm is at most
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(n+ 1) -ca(m/er) .

We will construct a slow timed execution of the algorithin that either exceeds the claimed
bound on response time or violates the mutual exclusion property. We begin by considering
a slow timed execution o’ that is heavily loaded starting from some time t. and letting a be
the shortest prefix of this timed execution that ends just after exactly n GRANT events have
occurred after time t. Lemma 5.11 implies that there is some permutation p, such that all
GRANT events that appear in a’ after time t occur in the order po,...,pn—1,p0,... In fact.
Lemma 5.11 implies that GRANT events that occur after time ¢ in any timed semi-execution
that extends a and is heavily loaded starting from time ¢, appear in the order po.....pn_1.
We sometimes abuse notation and write p, < p,, when ¢ < j. that is p,, precedes p,, in the
the order established by p.

We now consider the “ring” of processes formed by the round-robin order defined above.
We extend the execution in such a way that messages are delivered with maximum delay when
sent from lower numbered processes to higher numbered processes (in the order established by
p). while messages going the other way are delivered immediately. Intuitively, this enables us
to “postpone” notification of the granting as long as possible.

More formally, we extend a to get a slow timed execution af’ which is heavily loaded
starting from time ¢t and such that the message delivery times for messages sent in ' are as
follows:

o If ¢ < j, tlen a message from p,, to p,, takes exactly time d.
e If i > j, then a message from p,, to p,, takes exactly time 0.

Let a8 be a “sufficiently long” prefix of af'. specifically, one for which

C_1 < tend(aﬂ) - tend(a) -d
c2 tend(aﬂ) - tend(a)

This can be easily done since, by assumption, ¢1/c; < 1. Let r; = topq(@) and ry = tenq(af).

Let v be such that afy = a/#’. We know that 5 contains a subsequence of n + 1 consecutive
GRANT events, in order

GRANT(po), GRANT(m),....GRANT(p,-1), GRANT(po).
Now divide v into n + 2 segments, yo.....v,41. Where
1. yo ends with the first of these GRANT (pg) events.

2. for each i.1 < i < n — 1. v, starts just after GRANT(p,_;) and ends with GRANT(p;).
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3. v, starts just after GRANT(p,.-1) and ends with the second GRANT(pg), and

4. ¥n41 includes the rest of 4.
Foreach 1.0 < i <m+ 1 lett, = t,,4(aFy...7,). Forany | << n, define the length of any
segment 3,, to be [, = ¢; — t;_. Iutuitively, (; is the amount of time that passes during 7;.

Figure 5 depicts the timed execution a3v. Each horizontal line represents events happening
at one process, the arrows show delay times between pairs of processes (after time rg), while
dashed vertical lines mark timne points that are used in the proof.

We now prove a key lemina that provides a lower bound for the length of each segment
1o v TIn-1-
Lemma 5.12 Foranyi 1 <i<n-1,
£ > ca(m/er) + d.
Proof: Assume by way of contradiction that
(; <ey(mfey)+ d

for some particular 1,1 <i < n - 1.

From ap~ we construct a new timed execution, aé, in which the mutual exclusion property
is violated. We first construct an intermediate timed execution aé’ in which we “shift” back
in time the events occurring at processes p, ....,p,._,;, in the following way:

1. Each event occurring at any of the processes pyg,...,p,,_, that occurs in B at time u,
also occurs in ¢’ at time u.

2. Each event occurring at any of the processes p, ,...,p,._, that occurs in By at time u,
occurs in ' at time u’ where:
(a) If u > ry then v’ = u — d.
(b) If ry < u < 7y then

g —T1 — d

’
U =r+4+——(u—-1y).
r, —n
le., ¥=n1 — rpori—d
Yu-ry ro—ry

That is, the events occurring at processes > p, at times > rp are moved d earlier; notice that
events occurring in a (at times < ry) are not moved. All the intermediate events are shifted
back proportionally.

The resulting sequences of timed events must be merged into a single sequence consistentiv
with the order of the times: events occurring at different processes at the same time can be
merged in arbitrary order. except that a SENI) event that corresponds to a RECEIVE event
in a3+ must precede it in ad’,
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Figure 5: The timed execution afy.
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Claim 5.13 ¢’ is a timed exrecution of the systen.

Proof: The key things that need to be shown are:

e No message is recetved before it is sent.
e No message takes more than time d to be delivered.

o No clock tick takes timne less than ¢y,
For the first 1wo conditions. notice that in .75 we have that niessages take time:

o « from all processes < p, . toall processes > p, . and

e 0 in the reverse direction.
We are only shifting events of processes > p, carlier by at most d. so message delivery time is
kept < d. aud no message is received before it is sent.

For the third condition. note that all clock tick intervals are of length ¢, in o35, and no
portion of this timed execution is shrunk by more than the ratio

re—ry —d
ry — T ’

As the original length of the tick interval was ¢;, the new length of a clock tick interval is at
least

ry — Ty ——(.1
Ccy o ———— > (.
ry — I

by the way .3 was selected. This completes the proof of Claim 5.13. ]

Now we resume the proof of Lemma 5.12. Note the followine additional properties of ¢ é’:

o Auy clock tick interval at a proces: < p, _, takes time exactly ry.

o Any clock tick iuterval at a process > p, that begius at a time > ry - d takes time
exactly ¢y,

e Anyv clock tick interval at a process > p, that begins at a time < r, — d and ends at a
time u > rp takes time at least w ~ ry + (cy = (u — r)) e /e2).

o The lengtl of the new segment corresponding to 4, is at most ex{m/cy).
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Now to get ad from aé’.we =shrink™ the portion of ad’ after time ry by the ravo (¢ /ey)
and move the FINISH{p,_y) event (of seqient 5;) after the GRANT(p,) event (at the end of
seement 4, ). thus creating a violation of the wulual crelusion property. More precisely. if an
event happens at tme o' in ad’. then the corresponding event happens at time « in aé. where:

{. Hu < ro then v = u.

2. 1M u > ry then of = ro 4+ (c1/e)u = ry).
Claim 5.14 aé s a timed ceccution of the systoimn.
Proof: The key things that need to be shown are:

o No cleck tick interval is smaller than ey.

o The FINISH{p,_1) event occurs within tiine m after the corresponding GRANT(p, )
event,

For the first condition. if a tick interval happens at process p, < p, _ or a tick interval

starts no sooner than time ry — d in o', then this clearly holds. since the properties of aé/

stated above implies that those intervals are of length ;.

The ouly case left is that of a tick interval that occurs at a process > p, and starts hefore
ro —d in ad’. Let u be the time at which the interval ends in ad’. If u < ry. then the interval is
not shrunk at all. so we can assume that « > ro. Then by the properties of aéd’ stated above,
the length of this interval in aé’ is at least w — ry + (¢2 — (u — r2)}¢1/c2). But in going from
a8’ to aé. only the portion of the interval after time r, gets shrunk; therefore, the length of
the new interval is at least

(w—=ry)ey/ea) + (eg = (u=r2))ey[ey) = ey,

as necded for the first condition.

For the second condition. the time hetween the GRANT(p,—1) and the GRANT(p,) in
anéo e the length of the segment corresponding to 5, in aé, is at most m: hence moving
FINISH(pi_1 ) after GRANT(p,) does not violate the mupper bound.

This completes the proof of Claim 5.11. =

To complete the proof of Lemma 5,12, we need only observe that né is a timed execution
of the system i which the mutual crelusion property is violated. a contradiction. [ |

Ta complete the proaf of Thieorom 5.9, consider the exceution a3y and consider the
REQUEST (pyy that acenrs just after the first of the designated GRANT(pg) events in 4.
From Lemma 5.10 it follows that

37




el /ey).

Togethier with Lemma 5.12 this implies that the total time from that REQUEST (pg) event
until the corresponding GRANT(pg) event is strictly greater than

(= luestmiey) +dy+ extmjfey)y=n-extmfey)+ (= Dd

as clatmed. |

6 Discussion and Open Problems

[n this paper. we hiave defined a timing-based variant of the mutual exclusicn problem. and
have considered hoth centralized and distributed solutions 1o this problem. We have proved
upper bounds for both cases. hased on simple algorithms: these bounds are fairly complicated
functions of clock time. manager or process step time, moving time for the moving parts, and

(in the distribured casel message delivery time.

We also have proved corresponding lower bounds for both cases. In the centralized case,
the lower bound exactly matches the upper bound. even when the manager step time and the
roundoffs are considered. In the more complicated distributed setting, the lower bound is very
close to the upper hound. but does not match it exactly.

The bounds are all proved using the timed antomaton model for timing-based concurrent
svstems. It is interesting to ask how dependent the results are on this choice of model. The
timed automaton model differs from some others in modeling process steps explicitly (rather
than assuming the algorithins are interrupt-driven); thus, our results involving this process step
time would not be expected 1o extend immediately to sucli interrupt-driven models (escept
possiblv in the limit. as this step time approaches zero), However, some of our results - most
notably. the lower bound for the distributed case - do not involve process step times and thus
appear to be quite model-independent. An alternative approach would be to use a general
model that describes interrupt-driven computation, but we do not yet know (in general) how
to define such model.

Thiere are several open questions directly related 19 the work presented in this paper. First,
there is a gap remaining between the upper and lower bound results for the distributed resource
allocation problen. Fven neglecting process step time, there is a difference of an additive terms
of d. the upper bound on message delivery time. and n- ¢z, then number of processes times the
upper bound ou the clock tick time. Preliminary results suggest that under certain assumptions
about the relative sizes of the parameters, the upper bound can be reduced by approximately
d. However, we do not yvet have a general result about this.

Ourlower bound for the distributed resource allocation problem assumes that (n—1)-d <
m o (ey/ep). It wonuld be interesting to see if this assumption can be removed.
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[t would ulso be interesting to consider the same problem in a model in which there are
nountrivial lower bounds on the time for message delivery (and perhaps for process steps).
While our upper bound proofs still work in this sitnation. the same is not true for our lower
bound proofs. The strategy of shrinking and shifting timed executions to produce other timed
executions hecomes much more delicate when lower bounds on these various kinds of events
must also be respected.

Our results imply that the ratio ¢;/c; has a significant impact on the response time of
the system. It would also be interesting to consider the case where a process has more than
ore clock. sayv an additional clock with bounds [¢].¢}). We would like to understand how the
results depend on the four parameters ¢, ¢,. ¢} and ).

Other related problems can also be studied using the models and techniques of this paper.
Oue could define timing-based analogs of other problems besides mutual exclusion that have
been studied ' the asvnchronous setting (for example. other exclusion problems such as the
dining philosophers problem. distributed consensus problems. or svnchronization problems such
as the session problens of [AT'L.81]): it should be possible to obtain combinatorial results about
thiem in the style of the results of this paper. In addition to defining variants of asynchronous
problems. one can also extract prototypical problems from practical real-time systems research
and use them as a ba-is for combinatoriaf work.

In another direction. the algorithm proofs presented here suggests general approaches to
verification of real-time systems. As mentioned in Section 4.1.3. we believe that there may be
a unified method for treating correctness and pcrformance analysis of timing-based algorithms.
and are currently exploring this possibility in [LA].

Woerk of the sort presented here (and the extensions proposed above) should provide an
excellent basis for evaluating the timed automaton model as a general model for reasoning
about timing-based systems (and comparing it with alternative models for timing-based com-
putation).
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A Proofs of Lemmas

A.1 Proof of Lemma 4.2

The proof is by induction on the length of a finite execution, ¢, that ends in state s. The
base. length 0. is trivial since FINISH(!) is not enabled in any initial state. So suppose that
a = a'(¢, (x.t),s) and the result holds for o’ and s’. We show it holds for & and s. We
cousider cases.

Case I: m = REQUEST{j}. for some j,0< j<n-1,0rn = ELSE.

First suppose that FINISH () is enabled in s.Astate. for some ¢, 0 < i < n — 1 (where
{ might or might not be equal to 7). Then it is also enabled in s'.Astate. The inductive
hyvpothesis implies that

1. (a) & TIMER > 0.
(b) &".Ftime(TICK) + (s"."TIMER — 1)¢; > s'.Ltime(FINISH(i)), and
(¢) FINISH(k) is not enabled in s'.Astatr. for any k # 1.

Since s. TIMER = s TIMER, we have s. TIMER > 0. Since
s.Ftimel TICK) = ' . Ftime( TICK),

and
s.Ltime(FINISH(i)) = s'.Ltime( FINISH (i),

we have that
s Ftime(TICK) + (s. TIMER — 1)¢; > s.Ltime( FINISH(1)).

Also. FINISH(F) is not enabled in s.dstate. for any k # 4.

Now suppose that s TICKED = true. Then it must be that = is REQUEST(j) and
s TICKED = truc. Then

S EHme(TICK) > &' . Ltime(LOCAL) + ¢; — |.

Since

s FHme(TICK ) = &' Ftime(TICRK),




s.Ltime(LOCAL) = s’ . Ltime(LOCAL).
we have that
s.Ftime(TICK) > s.Ltime(LOCAL) + ¢y — L.

Case 2: # = FINISH(j), for some j, 0 < j <n - l.

First suppose that FINISH (i) is enabled in s.Astate, for some i, 0 <7 < n - 1. It cannot
be that ¢ = j so j # i¢. But then both FINISH(i) and FINISH(j) are enabled in s'.Astate,
which contradicts the inductive hypothesis. Therefore, this case cannot occur.

Second, suppose that s. TICKED = frue. Then the same argument as in Case 1 shows that
s.Ftime(TICK) > s.Ltime(LOCAL) + ¢; — .

Case 3: # = TICK.

First suppose that FINISH({) is enabled in s.Astate, for some i, 0 < ¢ <n - 1. Then it is
also enabled in s’.Astate, so the inductive hypothesis implies that

1. (a) ¢.TIMER > 0,
(b) §'.Fitme(TICK) + (8. TIMER - 1)c; > s'.Ltime(FINISH(%)), and
(c¢) FINISH(k) is not enabled in s'.Astate, for any k # ¢.

We first prove that s. TIMER > 0. If not, then it must be that s TIMER = 1. Then the
inductive hypothesis implies that

s'.Ftime(TICK) > s'.Ltime( FINISH (%)).

But then the definition of time(A) implies that ( TICK,t) is not enabled in &, since a FINISH(i)
must happen first. This is a contradiction.

For invariant 1b, we see that

s.Ftime(TICK) + (s.TIMER - 1)¢;

= t+c + (S TIMER - [ - 1)e;

= t+ (5. TIMER - 1)c,

> t+ s .Ltime(FINISH(?)) — &'.Ftime(TICK)
by inductive hypothesis,
s'.Ltime(FINISH(i))
by the definition of time( A),
= s.Ltime(FINISH({)).

v

Thus,
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s.Ftime(TICK) + (8. TIMER - 1)e; > s.Ltime( FINISH{(3)).

The third clause carries over easily.

Now suppose (actually, it must happen) that s, TICKED = true. Then s.Ftime(TICK) =
t+ ¢, and s.Ltime(LOCAL) <t +!.so

s.Ftime(TICK) > s.Ltime(LOCAL) 4+ c; — .

Case §: 1 = GRANT(j). for some j, 0 < j < n-— 1.

First suppose that FINISH({) is enabled in s.Astate, for some i, 0 < i < n-1. If i £ j,
then FINISH({)} is also enabled in s’.Astate. so by the inductive hvpothesis. s."TIMER > 0.
But this contradicts the preconditions of GRANT(J). Therefore, it must be that i = j.

Then the effects of GRANT(¢) imply that s. TIMER > 0. Note that
s'.Ltime(LOCAL) > t
(since GRANT is a locally controlled action) and that
s . Ftime(TICK) = s.Ftime(TICK).

Then

s.Ftime(TICK) + (s.TIMER - 1)
s'.Ftime(TICK) 4 (s. TIMER - 1)¢

> &.Ltime(LOCAL) + ¢; — | 4+ (s.TIMER - 1)
by inductive hypothesis. since s TICKED = true,
> t+4+c -1+ (s TIMER - 1)

by the inequality above,
= t+e—{+([{m+D/erf)e
> t+ m=s.Ltime(FINISH(1)).

Thus,
s.Ftime(TICK) + (8. TIMER — 1)¢; > s.Ltime(FINISH(1))

as needed.
The mutual exclusion condition has alreadv been shown.

It is not possible for TICKED = true in s. by the effects of the GRANT. ']
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A.2 Proof of Lemmma 5.2

The proof is by induction on the length of a finite execution, a. that ends in state s. The hase,
length 0. is trivial. So suppose that « = /(. (7.1). s) and the result holds for a’ and . ‘We
show it holds for a and s. by considering cases.

Case I: misa REQUEST.ELSE,FINISH. TICK or GRANT action.

These steps do not change the contents of any channel or the number of processes i for
which s. TOKEN({) # not_here.

Case 2: # = RECEIVE-TOKEN(j). for some j,0 < j <n -1,

Since RECEIVE-TOREN(j) is enabled in s’.Astate we have that #tokens(j — 1) > 1. By
the induction hyvpothesis, this implies that for all processes i, s TOKEN(i) = not_here. The
length of one channel queue is decreased by one, while one token state (of j) is changed from
not_here to available; thus, the total number of tokens on channels plus the number of processes
lolding the token (i.e., having TOKEN # not_here), is preserved.

Case 3: m = SEND-TOKEN(j), for some j,0< j < n-1.

The number of processes for which s. TOKEN(j) = not_here is decreased by one relative
to s’. while the number of messages on the channels is increased by one. This implies that the
sum we are interested in remained the same. [ |

A.3 Proof of Lemma 5.3

The proof is by induction on the length of a finite execution, «, that ends in state s. The base.
length 0, is trivial. So suppose that a@ = o/(s’,(7,t).s) and the result holds for o’ and s’. We
show it holds for « and s, by considering cases.

Case 1: # = REQUEST(j) or # = ELSE(j), for some j,0< j<n-1.

First suppose that FINISH (i) is enabled in s.Astate, for some i, 0 < i < »n — 1 (where
¢ might or might not be equal to j). Then it is also enabled in s'.Astate. The inductive
hypothesis implies that:

1. (a) . TIMER(:) > 0,
(b) & Ftime(TICK(i))+ (s TIMER(¢) — l)ey > ¢’ .Ltime(FINISH({)). and
(c) s"" TOKEN(:) = used.

Since s. TIMER(i) = s". TIMER({) we have s. TIMER(¢) > 0, showing la. Since
s.Ftime(TICK(i)) = s’ . Ftime( TICK (i),

and




s.Ltime(FINISH(i)) = s'.Ltime( FINISH(¢)),
we have that
s.Ftime( TICK (1)) + (. TIMER({) — 1)ey > s.Ltime(FINISH(1)).

So we have invariant 1b. Invariant 1c¢ carries over as this step does not change token states.
Now suppose that s TICKED({) = true.
Then . TICKED(/) = true, and

s .Ftime(TICK(i)) > s".Ltime(LOCAL(i)) + ¢; = L.
Since

s.Ftime(TICK(i)) = «'.Ftime( TICK(¢))
and

s.Ltinee(LOCAL(t)) = s'.Ltime(LOCAL(1))
we have that

s.Ftime(TICK (1)) > s.Ltime(LOCAL()) + ¢1 = 1.

So we have invariant 2.
Case 2: = = FINISH(j),for some 3,0 < j<n-1.

First suppose that FINISH (i) is enabled in s.-state, for some i, 0 < i < n — 1. It cannot
be that i = j so j # ¢. Then FINISH(i) is also enabled in s’. As FINISH(j) is also enabled in
s’. we have, by invariant lc. that s> TOKEN(j) = used. Similariv. as I'INISH(?) is enabled in
s'. we have. by invariant lc. that s TOKEN(?) = used. But this implies that the number of

processes for which TOKEN # not_here is at least two, contradicting Lemma 5.2. Therefore,
this case cannot occur, and we have invariant 1.

For invariant 2. suppose that s, TICKED(i/) = frue. Then the same argument as in Case 1
shows that. for all I,

s Ftime(TICK (1)) > s.Ltime(LOCAL(i)) + ¢y — L.

Case 3: m# = TICK(j). for some j,0< j <n -~ L.

First suppose that FINISH(i) is enabled in s.4state. Then it is also enabled in s’.Astate,
so the inductive hypothesis implies that




1. (a) §."TIMER(:) > 0,
(b) s'.Ftime(TICK({)) + (s TIMER(/) — L)e; > s'.Ltime(FINISH(i)), and
(c) s."TOKEN(:) = used.

We first prove that s. TIMER({) > 0. If not. then it must be that s TIMER(/) = 1. and
j = 1. Then the inductive hypothesis implies that

s .Ftime(TICK(i)) > s'.Ltime(FINISH(i)).

But then the definition of time(B) implies that TIC'K(7) is not enabled in &' (since FINISII(i)
must happen first). This is a coutradiction. so we have invariant la.

For the invariant 1b, if i = j, then
s. TIMER(i) = ¢ TIMER(?) - 1

and we see that

s.Ftime(TICK()) + (s.TIMER(?) - l)ey
= t4c 4 (S TIMER() = 1 — L)ey
= t+ (s TIMER(:) - 1)
> t+ s . Ltime(FINISH(i)) — s'.Ftimc( TICK(4))
by inductive hypothesis,
s'.Ltime(FINISH(i))
= s.Ltime(FINISH(1)).

v

Therefore,
s.Ftime(TICK(z)) + (s. TIMER(i) — 1)e; > s.Ltime(FINISH(?)),

and we have invariant 1b. If ¢ # j then invariant 1b follows as in Case 1. Invariant lc carries
over as this step does not change token states.

Now suppose that s. TICKED(i) = true. If i = j, then s.Ftime(TICK(:)) = t + ¢, and
s.Ltime(LOCAL({)) < t+1, so

s. Ftime(TICK(i)) > s.Ltime(LOCAL({)) + ¢1 = 1,

as needed for invariant 2. On the other hand, if ¢ # j. then s TICKED(i) = truc and the
induction hypothesis on invariant 2 implies that

s Ftime(TICK(i)) > s'.Ltime(LOCAL(i)) + ¢1 ~ L.
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Then invariant 2 for s follows as in Case 1.
Case 4: T = GRANT(j), for some j,0 < j<n-1.

Then s'"TOKEN = available. First suppose that FINISH(:) is enabled in s.Astate, for
some i, 0 <7 <n-1. If i #j then FINISH(?) is also enabled in s'.Astate, so by inductive
hypothesis (invariant 1c), s TOKEN(¢) = used. But this contradicts Lemma 5.2, so i = j.

Then the effects of GRANT(j) imply that s. TIMER(j) > 0, so we have invariant 1a. Note
that

s'.Ltime(LOCAL(5)) > t
and that
s'.Ftime( TICK(j)) = s.Ftime(TICK(j)).

Then
s.Ftime(TICK(j)) + (s.TIMER(j)- L)e;
s' . Ftime(TICK(j)) + (s. TIMER(j) — 1)e;

> §'.Ltime(LOCAL(j)) + ¢1 — | + (s.TIMER(j) — 1)
by inductive hypothesis,
> t4c -1+ (s.TIMER(j) - 1)y

= t+ea-Il+({{(m+)/a))a
> t+ m = s.Ltime(FINISH(j)).

Thus,
s.Ftime(TICK(j)) + (s. TIMER(j) — 1)e; > s.Ltime( FINISH(j))

and we have invariant 1b.
Invariant lc follows from the effects of the GRANT.

Now suppose that s. TICKED(¢) = true. Then the effects of GRANT(5) implies that j 3 ..
Then invariant 2 follows as in Case 3.

Case 5: # = RECEIVE-TOKEN(j), for some j,0 < j < n - 1.

From the inductive hypothesis on invariant 1c and Lemma 5.2 it follows that FINISH(:) is
not enabled in s’, hence it is not enabled in s. So we have invariant 1.

Invariant 2 follows as in Case 1.
Case 6: m = SEND-TOKEN(j), for some j,0< j < n— 1.

If FINISH(7) is enabled in s, then it is also enabled in &', but then from invariant 1a it follows
that " TIMER(j) > 0, so SEND-TOKEN(j) is not enabled in s’. This is a contradiction, so
invariant 1 holds.

Invariant 2 follows as in ('ase I. ]
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